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ABSTRACT
In the debate over high frequency trading, the frequent call
(Call) mechanism has recently received considerable atten-
tion as a proposal for replacing the continuous double auc-
tion (CDA) mechanisms that currently run most financial
markets. One natural question, which has begun to spur
the development of new models, is the e↵ect of competition
between platforms that use these two di↵erent mechanisms
when agents can strategize over platform choice. In this pa-
per we contribute to this nascent literature by developing
an agent-based model of competition between a Call market
and a CDA market. Our model incorporates patient in-
formed traders (both high-frequency and not) who are will-
ing to wait for order execution at their preferred price and
impatient background traders who demand immediate exe-
cution. We show that there is a strong tendency for the Call
market to absorb a significant fraction of trade under most
equilibrium and approximate-equilibrium conditions. These
equilibria typically lead to significantly higher welfare for the
background traders, an important measure of social value,
than the operation of an isolated CDA market.

Keywords
Competing platforms; agent-based modeling; market mi-
crostructure

1. INTRODUCTION
Most modern financial exchanges operate using the con-

tinuous double auction (CDA) mechanism, which in princi-
ple allows for trading in continuous time, at least to within
our measurement and implementation capabilities. With
companies investing in faster infrastructure for trading and
events like the “flash crash” of May 2010, high frequency
trading (HFT) has become an increasingly debated topic in
both the media and policy spheres [15]. Proponents claim
that high-frequency trading improves liquidity and price dis-
covery. Improved liquidity means lower transaction costs for
average investors, while better price discovery serves the so-
cial information aggregation and dissemination role of mar-
ket prices [2,16]. However, there is increasing evidence that
at least one form of high frequency trading, namely latency

Appears in: Proceedings of the 15th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS 2016),

J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),

May 9–13, 2016, Singapore.

Copyright

c� 2016, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

arbitrage, has reached a point of socially diminishing re-
turns. Budish et al demonstrate this both empirically and
through a simple model: empirically, they show that cor-
relations between virtually identical assets being traded in
di↵erent markets break down at very small timescales, while
they are essentially perfect at larger timescales [3]. This can
almost be thought of as a law of physics – there is no nat-
ural force tying the assets or markets together, so there is
no way to make them actually move simultaneously. What
is problematic is the “arms race” this creates to extract the
maximum profit from squeezing this reaction time down as
much as possible. Budish et al show that this is not only
socially ine�cient, it can actually create thinner markets.
Along similar lines, Wah and Wellman build a model where
an asset is traded on two markets, and there is an infinitely
fast latency arbitrageur present. They show how the pres-
ence of the arbitrageur can hurt social welfare [22]. Both sets
of authors recommend frequent batch auctions as a market
structure that could replace CDAs, since the minimum time
period between trades is specified, and there is no benefit to
being faster than that.

An important question for the possible use of frequent
batch (or call) auctions is how they would work in the pres-
ence of existing CDA markets. Competition between ex-
changes or platforms that try to attract trade is a vast
topic, and there is evidence in many domains that platforms
with better welfare properties assuming that there is only
one platform available may not be able to capture enough
of the market for these properties to become evident when
they face competition from other platforms. For example,
in living-donor paired kidney exchange, even though ex-
changes that wait to build thickness may be socially prefer-
able, exchanges that match greedily can make them non-
viable [6]. Therefore, even though they may have desirable
welfare properties, could call auction based markets actually
take volume away from CDA markets if both existed simul-
taneously? Wah et al have engaged this question using em-
pirical game theoretic analysis [21]. They develop a model
where the environment is populated by fast (HFT) and slow
(non-HFT) traders. They argue that a frequent call mar-
ket in the wild could attract su�cient volume for viability
from two perspectives: first, in equilibrium, welfare of slow
traders is generally higher in the call market, where they are
relatively protected from sniping and adverse selection, and
second, fast traders are willing to follow the slow traders
to either market, including to the call market, so it could
serve as a basin of attraction. Wah et al’s model does not
consider traders who have a preference for immediacy, and



they also restrict traders to choose a single market and then
do not allow traders to move. While their results are quite
promising, we seek to build a richer model that combines as-
pects of classic financial market microstructure models and
agent-based models that are known to replicate important
properties of order books.

Another line of literature relates to the TAC Market De-
sign Competition (CAT) [17]. In this competition, partici-
pants aim to design better mechanisms to maximize a score
(a combination of profit, market share and transaction suc-
cess rate) when traders are drawn from a known population
of di↵erent types. CAT gives a general view of competition
among di↵erent markets, but our paper focuses on a com-
parison of two more specific market mechanisms and how
they influence the social welfare of traders.

1.1 Overview and Contributions
In this paper, we build an agent-based model to analyze

platform competition between financial exchanges. Agent-
based modeling seeks to fill the hole in simple stylized mod-
els which may not represent agent behavior in su�ciently
complex manners to really capture the essence of the impor-
tant phenomena. The last two decades have seen substantial
work on agent-based modeling of financial markets, using
both sophisticated [4, 7, 9, 18] and simple [8, 12, 14] trader
models in the population. Our model is as parsimonious as
possible while attempting to capture the essential relevant
behaviors that are important to understanding the behav-
ior of these markets. As such, it follows the basic structure
of classic models of market microstructure such as those of
Glosten and Milgrom [11] and of Kyle [13], in which there
are informed traders, who possess superior information and
trade in search of profit, liquidity (or background) traders,
who trade for exogenous reasons (e.g. retirement funds that
receive cash and need to track indices, or investors liqui-
dating portfolios in retirement or in order to buy a house,
say) and demand immediacy, and market makers, who may
be employed in order to facilitate price discovery and trade
execution.

Our key measure of welfare is the price of immediacy – the
expected loss su↵ered by background traders. This measures
the cost that the “average trader” pays in order to execute
transactions. This is a di↵erent measure than that of Wah
and Wellman [23] or Wah et al [21], who use surplus. These
are both reasonable measures, but surplus is most mean-
ingful in private value models, where some meaning can be
attributed to di↵erent agents having di↵erent valuations for
an asset. Our model follows in a tradition of common value
models, where the asset has a true underlying value, and
di↵erent traders may have di↵erent estimates of that true
value. The existence of background traders in our model
provides a useful proxy for estimating the cost of trading.
It is worth noting that this doesn’t mean that background
traders are necessarily losing money – typically such traders
would stay in the market for much longer, and under rea-
sonable models of price appreciation, these “losses” can be
thought of as transaction costs for buy-and-hold type in-
vestors.

First, we look at simple models of individual markets and
confirm that our model satisfies the basic intuitions one
would expect. Namely, informed traders (in particular, low
latency traders) make more profit (and background traders
are consequently made worse o↵) in CDA markets than in

frequent call markets. A zero-profit market maker (with no
specialized information) can greatly improve the position of
background traders, taking away most of the profit oppor-
tunities from informed traders in CDA markets. Next, we
model competition between a CDA market and a frequent
call market when informed traders pick which market to
place their orders in based simply on which market is more
mispriced with respect to their current belief. We show that
the informed traders do better overall when they choose to
place orders in the market that is more mispriced from their
perspective. We show that, when informed traders are all
using this strategy, a majority of orders flows to the call mar-
ket, and background traders are better o↵ than in a single
CDA market.

Note that all of the above analysis is not in an equilibrium
setting – we assume that all informed traders use the same
strategy. We can use the insights developed in these mod-
els to begin analyzing strategic market choice. We do so by
introducing a learning framework, where informed traders
learn a parametric form for the expected profit of choosing
to place an order in a market (and a non-parametric proba-
bility of order execution) given the distance of that market’s
“current price” from the trader’s estimate of the true value
of a stock. We show that, when all agents use this learn-
ing approach, they converge to an approximate equilibrium
where a majority of trades again flow to the frequent call
market.

2. MARKET MODEL

2.1 The CDA and Call Markets
Our model of competing markets consists of two markets,

one employing a continuous double auction (CDA) mecha-
nism and the other one employing a frequent call (CALL)
mechanism. We begin by describing the details of each in-
dividual market, which will serve as the foundation for our
model of competing markets.

Each market is running in the continuous-time interval
[0,T]. A single security is traded in the market. There is an
underlying “true value”process. The initial true value of the
security v0 is drawn from a Gaussian distribution with mean
vinitial and standard deviation �initial. Then, the true value
jumps according to a Poisson process with rate parameter
�jump. If the true value jumps, the new true value vt is
generated from vt ⇠ N (vt�dt,�j), where vt�dt is the price
instantaneously before the jump (we restrict vt � 0, so all
values are truncated at 0).

In the CDA market, outstanding orders are maintained
in two priority queues: one for bids (the buy orderbook)
and one for asks (the sell orderbook). Bids and asks are
prioritized by price first and time second. When a new order
comes in, it is added to the corresponding order book. A
trade is executed if the highest bid exceeds or is equal to the
lowest ask. The execution involves the orders at the top of
the bid and ask queues, at the price of the older of the two
orders involved.

The CALL market is similar to that described by Budish
et al [3]. It clears in fixed intervals of time ⌧ (the call in-
terval). At each clearing time, the market collates all of the
orders and computes the aggregate demand and supply func-
tions of all bids and asks, respectively. The market clears
where supply equals demand, with all executions occurring
at the same price, called the market-clearing price. None of



the orders are visible to any traders during the call inter-
val. The market announces the market-clearing price after
each clearing (market announcement). When no order was
executed at the last clearing time, if both the buy and sell
orderbooks are not empty, the market announcement will be
the mid-point of the highest bid and lowest ask, otherwise it
will be the most recent available market-clearing price. All
untraded orders roll into the next call.

2.2 Valuation model
Each trader has a private valuation for the security (or

equivalently for our purposes, a private signal of the true
value). We have two types of traders, informed (IF) traders
and background (BG) traders. Each informed trader IFi re-
ceives a private signal of the security value, wi,t ⇠ N (vt̂,�trader),
where vt̂ is the underlying true value of the security at some
time t̂, where t̂  t, and �trader is a noise parameter. We de-
fine two types of informed traders, namely, low latency (LL)
traders and high latency (HL) traders. High latency traders
have staler information, i.e., wi,t ⇠ N (vt��,�trader), and
low latency traders observe information with no delay, thus
wi,t ⇠ N (vt,�trader). Background traders do not have any
private information; each arriving background trader wishes
to either buy or sell one unit (with equal probability). They
demand immediacy, that is, they want to get their orders
executed as soon as possible, so they are willing to take any
market price.

2.3 Agent arrival process
There are a fixed number of traders of each type. Informed

traders and background traders both arrive at the market ac-
cording to separate Poisson processes, with informed traders
arriving with rate �IF and background traders’ arriving with
rate �BG. In the event that an informed trader arrival oc-
curs, a specific IF trader is selected uniformly at random
from all the IF traders to place/replace an order; similarly,
if a background trader arrival occurs, a specific BG trader
is selected uniformly at random from all the BG traders to
place/replace an order.

2.4 Agent strategies in individual markets
Each of the informed traders and background traders is

only allowed to maintain a single unit order in the market.
When informed and background traders reenter the market,
they can replace existing orders that have not yet been exe-
cuted. We model informed traders as using limit orders and
background traders as using market orders exclusively.

Informed traders’ strategy: Sindividual.
We consider trading strategies in the Zero Intelligence

(ZI) family for informed traders. There is a large literature
involving ZI strategies, including some controversy, which we
will not rehash here [4, 19]. While ZI strategies are clearly
not the “best” trading strategies in isolation, it is also gen-
erally believed that they model order arrival processes well,
and they are a standard method for choosing prices in com-
plex agent-based market simulations [9,18]. We first define,
in the CDA market,

p⇤t,CDA =

8
>><

>>:

(BIDt.p) + (ASK t.p)
2

, if BIDt and ASK t exist,

the most recent execution price, if any order

book is empty,

where (BIDt.p) and (ASK t.p) refer to the price of BIDt and
ASK t respectively. And in the CALL market,

p⇤t,CALL = the most recent market announcement .

When an informed trader IFi places an order, a limit price
is generated from

pi,t ⇠ N (p⇤t,market,�price),

where market 2 {CDA,CALL}. Based on pi,t and wi,t, the
informed trader IFi’s strategy at time t is as follows,

pi,t

8
><

>:

>wi,t, places a unit sell order,

<wi,t, places a unit buy order,

=wi,t, uniformly at random places a unit buy or sell order.

Note that pi,t = wi,t is a zero probability event. If pi,t >(ASK t.p)
and the order is a buy order, then it executes immediately
and therefore e↵ectively functions as a market order. Simi-
larly if pi,t <(BIDt.p) and the order is a sell order. We call
the strategy above Sindividual.

Background traders’ strategy.
The background traders choose whether they want to buy

or sell a unit uniformly at random. Once the direction is
decided, the order is routed to the market and handled in a
special manner as a market order through a “waiting”mech-
anism. The market is aware of the direction of a market
order and the fact that this indicates the trader would like
to execute the order at any available market price. However,
market orders are not visible to any other traders in both
the CDA and CALL markets, since they may need to wait
for execution if there is no corresponding limit order on the
other side in the CDA market, and at least until the next
call in the CALL market.

Market maker’s strategy.
In the CDA market, we also incorporate a market maker

in some of our experiments. To increase the liquidity of
the market, the market maker maintains a unit buy order
and a unit sell order at all times. This market maker is
implemented using the Bayesian market making algorithm
(BMM) of Brahma et al [1], with parameters tuned to main-
tain near zero-profit. BMM is a learning algorithm that
learns from the current bid and ask prices and the direction
of incoming trades, augmented with jump prediction and a
technique to widen its spread in times of uncertainty. BMM
updates its own belief whenever there is an execution, and it
immediately replaces its orders. Our implementation closely
follows that of Brahma et al, except that we only need to
use it for unit orders in our model.

2.5 CDA and CALL market operation

CDA market operation.
In the CDA market, BIDt and ASK t are based only on

orders from informed traders (and also possibly the market
maker). If the order book only has market orders that are
waiting from background traders, the market shows the or-
der book as empty. The scenario that we want to simulate
is that background traders are waiting in the market to buy
or sell; as soon as an unfilled corresponding order becomes
available, they will immediately take the other side of that



order. We need to specify the execution priority in the situ-
ation where one side of the market has both market orders
and limit orders from informed traders. In this case it must
be that the other side of the market is empty (note that this
never happens with a market maker present), otherwise the
market orders on the first side would have executed. In this
situation, we prioritize by time. Procedure 1 illustrates the
operation of a CDA market when a new buy order arrives
(a sell order arrival is similar).

Procedure 1 CDA market operation when a new buy order
arrives

Input: buy orderbook, sell orderbook
1: A new buy order OD1 arrives, (OD1.p) is the price of

OD1

2: if not empty(sell orderbook) then
3: if OD1 is a limit order then
4: if (OD1.p) � (ASK t.p) and ASK t comes earlier

than any market order then

5: Execution(ASK t, OD1) at (ASK t.p)
(in which case, OD1 is the highest bid and
sell orderbook has limit orders from IF traders or
BMM )

6: else

7: if sell orderbook contains market orders then
8: Execution(the oldest market ask, OD1) at

(BIDt.p)
(in which case, OD1 is the highest bid)

9: end if

10: end if

11: else {OD1 is a market order}
12: if ASK t is available and comes earlier than any

market order then

13: Execution(ASK t, OD1) at (ASK t.p)
14: else

15: Execution(the oldest market ask, OD1) at the
most recent execution price

16: end if

17: end if

18: end if

CALL market operation.
The main di↵erence from a standard aggregation mecha-

nism in our implementation involves the background traders.
Background traders would like to buy or sell at any price, so
all the market orders are always at the top of both the sell
orderbook and the buy orderbook in the CALL market. All
the market orders in each orderbook are prioritized by sub-
mission time, with earlier submissions having higher priority.
At each clearing time, the market collates all of the orders
and computes the aggregate demand and supply functions
of all bids and asks, respectively. The market clears where
supply equals demand, with all executions occurring at the
same price, the market-clearing price. If the market only
clears market orders, the market-clearing price is the most
recent market announcement. If only market orders clear on
one side of the market, while some limit orders clear on the
other side, the market-clearing price is determined by the
side that has limit orders being cleared. More specifically, if
cleared buy orders consist of only market orders and cleared
sell orders include limit orders, the clearing price will be the
highest ask of all the cleared limit orders; if cleared sell or-

ders consist of only market orders and cleared buy orders
include limit orders, the clearing price will be the lowest bid
of all the cleared limit orders. When some limit orders clear
on both sides of the market, the clearing price is the mid-
point of the highest ask and lowest bid of all cleared limit
orders.

3. COMPETING MARKETS
In the competing markets model, we assume that one

CDA market and one CALL market run simultaneously.
A single security is traded in both markets. Thus, there
is only one underlying “true value” process, but the CDA
and CALL markets can price the security di↵erently. The
traders choose to place orders in only one market at a time,
although they can switch markets each time they re-enter.
Each market is running in the same manner as when there
is an individual market and each trader can maintain only
one unit order in the whole system.

3.1 Agent strategies in competing markets

Informed traders’ strategy.
On what basis should a trader choose which market to

place an order in? One important factor is the distance
between the trader’s belief and p⇤t,market,

dmarket
i,t = |wi,t � p⇤t,market|, (1)

where market 2 {CDA,CALL}. We call this the belief dis-
tance. Comparing dCDA

i,t with dCALL
i,t , the informed trader IFi

can choose one of two strategies. One is to place the order
in the market that has larger dmarket

i,t , SLARGE, and the other
is to place the order in the market that has smaller dmarket

i,t ,
SSMALL. The tradeo↵ here is that IFi gets lower probability
of execution but higher profit if she places the order in the
market that has larger dmarket

i,t . We will discuss the e↵ects of
these two di↵erent strategies in Section 4. Strategy 1 shows
a summary of IFi’s strategy in the competing markets. Af-
ter IFi decides in which market to place the limit order, she
follows Sindividual to decide the direction and price of the
order in the selected market.

Strategy 1 IFi’s strategy in the competing markets at time
t

1: if following SLARGE then

2: dCDA
i,t

8
>>><

>>>:

>dCALL
i,t ,

places an order at CDA market

following Sindividual

<dCALL
i,t ,

places an order at CALL market

following Sindividual

3: else {following SSMALL}

4: dCDA
i,t

8
>>><

>>>:

<dCALL
i,t ,

places an order at CDA market

following Sindividual

>dCALL
i,t ,

places an order at CALL market

following Sindividual

5: end if

Background traders’ strategy.
When a background trader enters the market to place or

replace a new order, she first compares the price in both
markets. For instance, if she wants to buy, she will compare



ASK t and p⇤t,CALL (if they are available), and select the
market which has the lower price to place a market order
there. If ASK t is not available, that is the sell orderbook in
the CDA market shows as empty, she will place the order
in the CALL market. She follows a similar process for sell
orders.

After every market clearing in the CALL market, the
background traders check whether their orders have been
executed. If not, and the corresponding order books in the
CDA market are not empty, that is the sell orderbook is not
empty if a BG trader wants to buy and the buy orderbook
is not empty if a BG trader wants to sell (here empty means
the order books do not have orders from informed traders –
market orders from background traders are not visible to any
trader), the background traders move their existing orders
from the CALL market to the CDA market. In the imple-
mentation, the background traders with orders that did not
execute are randomly permuted. Each of them moves their
order to the CDA market in this random order, until there
are no corresponding limit orders on the other side of the
market in the CDA. This process is atomic in time.

Strategy 2 shows the overall framework for implementing
buy orders for background traders in the competing markets
model. The sell strategies are similar.

Strategy 2 The overall framework for implementing the
buy orders for background (BG) traders in the competing
markets model

1: t = 0
2: while t  T do

3: An event happens after �t
4: t = t+�t
5: if A BG trader arrives in the market then
6: BGi is selected from all BG traders uniformly at

random
7: if ASK t is available then

8: if ASK t <= p⇤t,CALL then

9: BGi places a market order in CDA market
10: else

11: BGi places a market order in CALL market
12: end if

13: else {sell orderbook in CDA market shows as
empty}

14: BGi places a market order in CALL market
15: end if

16: end if

17: if CALL market clear then
18: After each market clearing
19: A = {All the BG traders who have buy orders in

CALL market}
20: while A is not empty and ASK t is available do

21: Select BGi uniformly at random from A
22: A = A� {BGi}
23: BGi moves her order to the buy orderbook in

CDA market, the new order age is re-generated
from the age counter.

24: CDA market clears
25: end while

26: end if

27: end while

4. SIMULATION RESULTS
In this section, we simulate four di↵erent environments,

namely CDA vs CALL competing markets (competing mar-
kets), an individual CDA market (i-CDA market), an in-
dividual CALL market (i-CALL market) and an individ-
ual CDA market with BMM (i-CDA-BMM market). The
parameters are set as follows. Each simulation run lasts
T = 100, 000 units of time. The initial true value of the
security v0 is drawn from N (vinitial = 50,�initial = 4). The
true value jump parameter �j = 4.0 and the rate parameter
for the jump is �jump = 0.0001, which means there is a jump
every 10000 units of time on average. We have 20 informed
traders, 10 high latency traders and 10 low latency traders,
and 20 background traders. Reentry rates are fixed across
the environments, with informed traders arriving in the mar-
ket at rate �IF = 2, and background traders entering at rate
�BG = 1. In all settings, CALL markets clear every 1 unit
of time, ⌧ = 1. The standard deviation of informed traders’
belief is �trader = 2.0, and the high latency traders’ infor-
mation delay is � = 1000 units of time. The time between
jumps is 10000 units of time on average, so high latency
traders have information with no delay a significant fraction
of the time, as vt�� = vt. Following a jump, high latency
traders receive staler information for the next 1000 units of
time. The standard deviation of the distribution from which
informed traders draw ZI prices is �price = 4.0. We simulate
both SLARGE and SSMALL strategies for informed traders.

Across our experiments, we are interested in the total profit,
expected per-order profit and order execution percentage for
each trader type. At time T , all shares held by traders are
liquidated at price vT . Unfilled orders are abandoned. The
expected per-order profit of each trader type is total profit
divided by the total number of executed and replaced un-
traded orders. In the environment with competing markets,
we also calculate the total and expected per-order profit in
CDA market and CALL market separately.

Figure 1 shows that the informed traders make higher
profit in both per-order and in total when using SLARGE.
The di↵erence are small but statistically significant. There-
fore, we would expect the informed traders to choose SLARGE

if given these two options (if they had to choose one as a
group), confirming our intuition that traders gravitate to
markets in which they perceive more mispricing. Because
of this, for the rest of our analysis, we use SLARGE as the
strategy for informed traders in the competing markets.

As mentioned in the introduction, one measure of social
welfare is the “price of immediacy”which is the loss su↵ered
by background traders. Figure 2 shows that, for the non-
competing settings, background traders perform better in
the i-CALL market than the i-CDA market in terms of both
the expected per-order (left figure) and total (right figure)
profit (consequently, informed traders have lower profit in
the i-CALL market than the i-CDA market). The i-CDA-
BMM market has much higher social welfare, as measured
by background trader losses, than both i-CALL and i-CDA
markets. This confirms some of the results of Wah and Well-
man [23] in a completely di↵erent model and setting. One
possible solution to the problems resulting from HFT may
then be to have market-making agents who are regulated
and deployed to perform this specific role in CDAs. They
could be compensated separately for this role. However, (1)
there are additional risks associated with this role [5] and
(2) markets have been moving away from having designated
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Figure 1: Comparison of expected per-order (left) and total (right) profit in the competing markets under the small distance
(SSMALL) and large distance strategies (SLARGE). LL-*, HL-* and BG-* represent low latency, high latency, and background
traders respectively. On the left, the first bar in each group shows the expected per-order profit in the whole competing
system, while the second and third show the contributions of the CDA and CALL markets to that total. On the right, the
stacked bars show total profit, with contributions from each of CDA and CALL shown within in di↵erent shades.
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Figure 2: The expected per-order (left) and total profit (right) of di↵erent types of traders in the competing markets (*-large),
the i-CDA market (*-i-cda), the i-CALL market (*-i-call) and the i-CDA-BMM market (*-i-cda-bmm).

specialists and allowing HFTs and others to fulfil the role of
market-makers. Given these practical realities, it is impor-
tant to understand how markets can function without them,
so we focus on comparing situations with no market maker.

In the competing markets (first 3 panels of Figure 2), we
analyze the expected per-order and total profit in the whole
system, and also in the CDA market and CALL market sep-
arately. Similar to running an individual market, the order
execution percentage is close to 100 for background traders
in the competing markets (shown in Figure 3), and so back-
ground traders are not losing out in terms of order execution.
Considering expected per-order profit, background traders
do better in the CALL market than the CDA market in
the competing markets (see left figure of Figure 2, *-large).
Overall, they are doing worse in the CALL market than
the CDA market in the competing system (shown on the
right of Figure 2, *-large), but this is because a vast ma-
jority of orders are going to the CALL market (see Figure
4), and they lose more money there. In sum, they are doing

slightly better in the competing markets than they do in the
i-CDA market in terms of both the expected per-order and
total profit. The better news is that the CALL is absorbing
a large fraction of the orders, driving trade away from the
CDA (see Figure 4). This is promising, because if the CALL
could absorb all the trades, the BG traders would be bet-
ter o↵, as the system would reduce to the i-CALL market.
We note that these results are robust for a wide range of
strategy parameters, information delay and arrival rates.

5. LEARNING TRADERS
The analysis above shows that frequent call markets ab-

sorb a large fraction of trade when we assume that all in-
formed traders use the same strategy. We now use the in-
sights developed in these models to analyze strategic market
choice. In this section, we introduce a learning framework
where informed traders learn a parametric form for the ex-
pected profit of choosing to place an order in a market, and
also a non-parametric probability of order execution given
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Figure 3: Order execution percentage in the competing mar-
kets (*-large), the i-CDA market (*-i-cda), the i-CALL mar-
ket (*-i-call) and the i-CDA-BMM (*-i-wmm).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LL-large HL-large BG-large

Pr
ob

ab
ili

ty
 

CDA CALL

Figure 4: Illustration of proportion of orders entering CDA
market vs. CALL market in the competing markets under
SLARGE.

the distance between that market’s price and the trader’s
belief (the belief distance defined previously). We then ana-
lyze the behavior of the system with these learning traders.

5.1 Learning algorithm
The expected profit ⇡t of an order placed at time t, con-

tingent on its execution, according to a trader’s belief, is

⇡t =

(
wt � execution price, if buy

execution price � wt, if sell
(2)

where wt is the trader’s belief about the true value at time t.
The trader computes expected profit assuming her belief is
correct. The main idea here is to predict the expected profit
if the order is placed in a particular market. Traders must
learn an estimate of this as a function of the belief distance.
In this paper, we allow all the traders to learn an expected
profit function that is quadratic in the belief distance. Each
learning trader LIFi uses an online regression algorithm for
reinforcement learning based on one developed by Walsh et
al [24]. The form of the learning model is:

ymarket
i,t = D

market
i,t Q

market
i , (3)

where ymarket
i,t predicts the expected per-order profit con-

tingent on execution, market = {CDA,CALL},Dmarket
i,t =

[(dmarket
i,t )2, dmarket

i,t , 1] and Q

market
i contains the weight pa-

rameters of the model for market = {CDA,CALL}. Thus,
the predicted expected per-order profit not contingent on
execution is given by

E(ymarket
i,t ) = Pr(exe|dmarket

i,t )Dmarket
i,t Q

market
i (4)

The probability of execution Pr(exe|dmarket
i,t ) is learned non-

parametrically by counting successful and unsuccessful exe-
cutions in bins of the belief distance.

The trader uses an ✏-greedy algorithm to select a market
to trade in along the learning path. Whenever the trader
makes a decision, with probability 1� ✏, she places an order
in the market with higher predicted expected profit, and
with probability ✏, she randomly picks one market to place
the order (✏ = 0.1 in our case). After market selection, the
trader chooses a price based on the ZI strategy Sindividual.

5.2 Results
Our goal is to use this model of learning traders to inves-

tigate two questions: (1) If all the informed traders use the
same learning algorithm, do they converge to (approximate)
equilibrium strategies? (2) Can we characterize any equilib-
ria of the competing markets system?1 We use an experi-
mental framework similar to Section 4. A CALL market and
a CDA market run simultaneously from [0, T ], T = 100, 000.
The CALL interval ⌧ = 1. There are 20 learning informed
traders (LIF). These are all low latency traders who observe
information with no delay; therefore wi,t ⇠ N (vt,�trader),
where vt is the underlying true value of the security at time
t, and �trader is the noise parameter. The reentry rate of
learning informed traders is �LIF = 2. There are 20 back-
ground traders (with reentry rate �BG = 1) following Strat-
egy 2. In addition, we also simulate the existence of a pool
of fixed informed traders (FIF) who are committed to a par-
ticular market, either CDA or CALL. This is to ensure that
there is some flow of trade in each market – otherwise there
are degenerate equilibrium paths where all traders start o↵
by going to one of the markets, and there is never incen-
tive to deviate to the other. There are 5 fixed (low-latency)
informed traders in each market who place orders following
Sindividual. The reentry rate of fixed informed traders is de-
fined as �FIF. We vary the reentry rate of fixed informed
traders �FIF = {1, 0.1, 0.0005}.

Outcomes of the learning process.
The first question is whether the learning process followed

by the informed traders converges, and, if so, whether the
learned representations are a good approximation to the true
profit function. Empirically, we find that the estimates of
Q

CDA
i ,QCALL

i under di↵erent �FIF settings all do converge.
Further, each trader’s parameters converge to very similar
ranges (see Figure 5). We check whether these parameters
are a good approximation by fixing the parameters of all
1Note that traders only choose which market to place an
order in (albeit as a function of the belief distances to both
markets, so this can be a complex decision space). Once the
market is determined, the choice of price is according to the
ZI strategy. The problem becomes exponentially more com-
plex if traders can strategize over both market choice and
price. Over time, traders should learn the expected profit of
the ZI strategy in a market, a useful proxy for the profit po-
tential of that market. It could be interesting to interact this
learning problem with di↵erent pricing strategies, but some
restriction will always be necessary to gain any traction.
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Figure 5: Five example plots of the curves traders learn for profits in the CDA and CALL markets. Each graph shows the
learned curves of 5 traders in one instantiated learning simulation.
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Figure 6: The learned curve vs. the best fit to realized
after-the-fact data for profit as a function of belief distance
in CDA and CALL markets.

the traders except one and having them play strategies using
those parameters. For the remaining trader, we flip a coin to
determine the choice of market, and test whether the profit
achieved is well-fit by the curve given by the learned parame-
ters. Figure 6 shows that the learning curves of the trader for
each market are very close to the polynomial curves that are
best-fit to the profits achieved using the randomized strat-
egy, confirming both that the quadratic space is a good fit
and that the learned parameters are correct for the environ-
ment.

Equilibrium.
As mentioned above, there are two main questions we

would like to engage. First, since all the traders are converg-
ing to a particular set of learned parameters, do these pa-
rameters constitute an equilibrium or an approximate equi-
librium (under the specified space of strategies – i.e., where
the strategy is a mapping from dCALL and dCDA to one of
the two markets, which can be specified by the quadratic
form of the expected profit function and the nonparametric
probability of execution model)? Is there a profitable devi-
ation (some other set of parameters that one of the traders
could use and increase her profits)?

To find deviations, we search the parameter space (hold-
ing the execution probability model constant) for this trader
using Bayesian Optimization (BO), a powerful framework
for optimization of a black-box function or expensive objec-
tive function that uses very few function evaluations [20].
Here, the objective function is the expected profit of a trad-
ing strategy that uses the parameters Q

CDA
i ,QCALL

i when
the other traders are using their learned strategies. Market
selection is determined by yCDA

i,t and yCALL
i,t based on Equa-

tion (4), so the actual values of QCDA
i and Q

CALL
i are not

important in themselves. The important thing is how they
decide the relation between yCDA

i,t and yCALL
i,t at each pre-

diction. Therefore, based on the value of parameters of the
learned curves from Figure 5, we constrain our search space
from [�10,10], as this is enough to represent the relation
between predicted profit in these two markets. We utilize
an existing code base for BO [10] to search the space.

Our results show that the learned parameters yield an
approximate equilibrium, achieving between 90-95% (0.91,
0.95, 0.95 for �FIF = .0005, 0.1, 1 respectively) of the profit
of the best response strategy found by BO. In the learned
approximate equilibrium, typically above 90% of orders are
placed in the CALL market. Interestingly, the best response
strategy found by BO always resulted in the deviating trader
placing every single order in the call market. So we then
asked whether all informed traders placing all their orders
in the call market is an equilibrium, and found that, except
under exceptional conditions, it is (that is, BO returned a
set of parameters for the remaining trader that resulted in
that trader placing all its orders in the CALL market as
well). The only condition which we found under which it
is not an equilibrium is when there is very little liquidity
from FIF traders in the CDA market, but still some back-
ground traders – in this case the deviating informed trader
can essentially become a price setter and trade with the
background traders at whatever prices it chooses.

6. CONCLUSION
We have developed an agent-based model in the tradi-

tion of classic microstructure models to engage the question
of whether frequent call markets can drive liquidity away
from CDA markets. If they could do so, this would have
the potential to increase welfare both by reducing trans-
action costs for average market participants and by reduc-
ing the incentive for firms to engage in the latency “arms
race.” Our results are promising. Even in the presence of
impatient background traders who primarily demand imme-
diacy and are willing to pay for it, we show in both a simple
zero-intelligence model, and more sophisticated learning and
equilibrium settings, that call markets have the potential to
attract a large fraction of the order flow. In addition to
the policy implications, we believe the modeling approach
taken in this paper constitutes a useful bridge between clas-
sic financial microstructure models and more complex agent-
based models, preserving intuition from the former, while
allowing us to examine richer environments and questions.
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